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Abstract. The Bayesian analysis of the spherical part of the electron momentum density was
carried out with the goal of finding the best estimation of the spherically averaged renormalization
parameter,z, quantifying the discontinuity in the electron momentum density distribution in Li
metal. Three models parametrizing the electron momentum density were considered and nuisance
parameters integrated out. The analysis show that the most likely value ofz following from the data
of Sakuraiet al is in the range of 0.45–0.50, while 0.55 is obtained for the data of Schülke et al.
In the maximum entropy reconstruction of the spherical part of the electron momentum density
three different algorithms were used. It is shown that all of them produce essentially the same
results. The paper shows that the accurate Compton scattering experiments are capable of bringing
information on this very important Fermiological aspect of the electron gas in a metal.

1. Introduction

One of the important Fermiological characteristics of metallic systems is the influence of
electron–electron correlation on the occupation number function. This function is neither easy
to calculate nor to obtain experimentally. However, in addition to the topology of the Fermi
surface, it is the crucial characteristics of the electron gas in a real metal, so an experimental
information on it is very needed. The measurements of the so-called Compton profiles, defined
as

J (pz) =
∫ ∫

n(px, py, pz) dpx dpy (1)

wheren(p) is the three-dimensional electron momentum density distribution, bring information
on the topology of the Fermi surface and on the behaviour of this function at the Fermi momenta.
This information, however, is not very easy to obtain directly from the experiment for two
reasons. Firstly, the number of crystallographic directions along which the measurements are
usually carried out is not too large. This makes good reconstruction of the three-dimensional
n(p) function very difficult. Secondly, the energy (or momentum) broadenings which are due
to the finite resolution function of the instrument smear out the discontinuities. If in addition,
the expected discontinuities are direction dependent, situation becomes truly complicated. We
should also stress thatn(p) function is not identical with the occupation number function but
one can obtain the latter by using the so-called Lock–Crisp–West method (Locket al 1973).
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In this paper we discuss the case of Li metal for which high-quality experimental data
exist (Sakuraiet al 1995, Scḧulke et al 1996). Lithium is very important as the simplest of
metals. Simultaneously it serves as a good test case because the anisotropy of the electron
momentum density is very small. Therefore the Compton scattering data can be spherically
averaged in order to obtain the spherical Compton profile, and the reconstruction ofn(p)may
be essentially reduced to the one-dimensional problem:

J (q) = 2π
∫ ∞
q

n(p)p dp. (2)

If J (q) represents a true Compton profile, the experimentally measured one is described by
the convolution ofJ (q) with the resolution functionR(q − q0) of the instrument:

Jexp(q0) =
∫
R(q − q0)J (q) dq. (3)

The resolution function is usually assumed to be Gaussian. In the case of the data collected
by Sakuraiet al (1995), treated in this paper, the FWHM of this function was 0.12 a.u. The
mathematical, inverse problem consists in obtaining possibly precise information about the
n(p) function from equations (3) and (2). In order to achieve this goal we apply the maximum
entropy method (Dobrzýnski and Holas 1996).

In the course of the preliminary one-dimensional reconstructions by Dobrzyński et al
(1997) it was noticed that the experimental data indicate that the renormalization parameter,
z, is not smaller than 0.2. More recent three-dimensional reconstructions were pointing to
the value over 0.4 (Dobrzyński, to be published). These values should be confronted with the
results of the original analysis in the paper by Schülkeet al(1996), which broughtz = 0.1±0.1,
theoretical value close to unity (Tanakaet al to be published) and the directionally averaged
value close to 0.3 which could be inferred from the paper by Kubo (1997).

In order to obtain better insight into the situation we decided to carry out first of all the
so-called Bayesian analysis of the probability of finding a given value ofz-parameter in the
experimental data. The paper is organized as follows. In the next section the very basis of the
Bayesian analysis is recapitulated. Next, in section 3, we discuss the algorithms used. The
models and results of the analysis are presented in section 4 followed by the conclusions.

2. Bayesian analysis

There exists a number of papers dealing with the very basis of the Bayesian analysis. We shall
quote and recapitulate here one of the most recent papers by Gerhardtet al (1998), which
contains most of the information needed for the purpose of our paper, and a little older one by
Siviaet al (1993), which serves as an introduction to the Bayesian model selection problem.

Let us have the dataDk, k = 1, . . . , Nexp, which are to be described by a positive definite
and additive distribution function{fn}, n = 1, . . . , Np through a linear relationship:

Dk =
Np∑
l=1

rklfl + σk (4)

where therkl matrix contains already information on the model and resolution function of the
instrument, andσk denotes the standard deviation of thekth experimental point.

For the distribution{fk}, the conditional probability of obtaining the set{Dk} of
experimental data is

P(D | f) =
∏
k

(2πDk)
−1/2 exp(−χ2/2) (5)
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where

χ2 =
∑
k

(Dk −Gk)
2/σ 2

k (6)

is the usual misfit function withGk describing the calculated value:

Gk =
Np∑
l=1

rklfl. (7)

Clearly, the least-squares-fit routines derive from maximizing probability (5). Now, one can
also ask about the conditional probability of having the distribution{f } given certain model
{m} and the regularization parameterα. This is equal to

p(f |m, α)| =
∏
i

(2πfi/α)
−1/2 exp(αS) (8)

where the information entropy,S, is given by

S = −
∑
k

fk ln(fk/mk). (9)

It is tacitly assumed that both the distributions,{m} and{f }, are normalized to the same value.
Using the Bayes theorem, the conditional (posterior) probability of obtaining{d} and{f }

given{m} andα, is

p(D, f |m, α) = p(D | f ,m, α)p(f |m, α). (10)

If in addition it is demanded that the distributions of interest are normalized, say, toZ, than
it follows from equations (8) and (9) that the probabilityp(D, f | m,α) is proportional to
exp(L), where

L = −χ2/2 +αS + β

(∑
fi − Z

)
(11)

andα andβ can be treated as undetermined Lagrange multipliers. Maximizing LagrangianL

with respect to the searched distribution{f }, and demanding that the sum overf isZ, results
in the equation

fi = Zmi exp(1i/α)

/∑
j

mj exp(1j/α) (12)

where

1i = −∂χ2/∂fi =
Nexp∑
k=1

(Dk −Gk)rki/σ
2
k . (13)

Solution of strongly nonlinear equations (12) lies in the heart of computational problems. The
proper choice of the multiplierα is also not trivial. As discussed in (Gerhardtet al 1998), the
optimal choice is

α =
∑

mi1
2
i

/∑
(fi −mi)2/mi. (14)

Assume now that among various distributions{f }, a distribution{f̂ } maximizes Lagrangian
(11). Assuming next that around this solution the Lagrangian has a quadratic form:

L(f) ≈ L(f̂) + 0.5
∑
i,j

(∂2L/∂fi∂fj )(fi − f̂i)(fj − f̂j ) (15)

one can integrate out the distribution{f } from P(D, f | m, α) and obtain the value of
conditional probabilityp(D |m, α), which will quantify the degree of belief we should have
in the model{m}. Such calculations allow for relatively easy model selection.
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3. Algorithms

The commercially distributed algorithm from the group of Cambridge was essentially described
in Skilling and Bryan (1984; see also Bryan 1990). The algorithm is robust and mathematically
stable. However, its cost is prohibitive for many groups wishing to use the maximum entropy
method. Therefore less advanced, yet efficient algorithms, are constructed and described in
the literature.

Probably the simplest way of solving equations (12) was suggested by Sakataet al (1993),
who elaborated so-called MEED package. The method consists in calculating1 values,
equation (13), for given{m}, then calculating{f } from equation (12), and treating this set of
{f } as a new model{m}. At every such iteration step one is controlling the value ofχ2. When
it falls below the value ofNexp (or 1 if the normalizedχ2 values are used), the program is
terminated. The Sakataet al method (MEED package) is easy to program and quite efficient.
The program convergence is also attained relatively easily. The main objections come from
the argument that during the calculations one is changing the initial model, so the entropy is
not really maximized with respect to this model. The experience with using Cambridge and
MEED (or MEED-type) algorithms in selected cases, see e.g. the paper by Dobrzyński et al
(1996), tells us that the results are not very different, so this argument may be in reality much
weaker than it seems at the beginning. We shall call this algorithm A1.

Recently, Gerhardtet al (1998) suggested the linearization of equation (12) and searching
the solution for the set of{1} instead of{f }. Generalizing a little the formulae given in their
paper on the case when the number of experimental pointsNexp is not equal to generally larger
number of pointsNp at which reconstruction is carried out, one is solving the equations:

Np∑
j=1

Mij1
(ν)
j = Cj (16)

where(i, j) = 1, . . . , Np and

Mij = Hijf (ν−1)
ij /α + δij (17)

Hij =
Nexp∑
k=1

rikrjk/σ
2
k (18)

Ci = di +
Np∑
k=1

Hikf
(ν−1)
k (1

(ν−1)
k − α)/α (19)

di =
Nexp∑
j=1

Djrji/σ
2
j (20)

f
(ν)
i = m(ν)i exp(1(ν)

i /α). (21)

Indexν numerates the iteration step. Within this notation

p(D |m, α) =
(∏

k

(2πDk)
−1/2 exp[L(f̂ )]

)/(√
det(I + α−1[f̂ ]H)

)
(22)

with I denoting the unit matrix and [̂f ] being a diagonal matrix. The algorithm of Gerhardt
et al (1998) will be called A2.

Very similar linearization can be carried out with respect to thefi itself. Denoting

δf = f (ν+1) − f (ν) (23)
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one obtains again equation (16) with1s substituted byδf and the following expressions for
Mij andCi :

M
(ν)
ij = δij + (1/α)Hijmi exp

{(
di −

∑
k

Hikf
(ν)
k

)/
α

}
(24)

C
(ν)
i = mi exp

{(
di −

∑
k

Hikf
(ν)
k

)/
α

}
− f (ν)i . (25)

Similarly to A2, the value ofα can be chosen according to equation (14). This algorithm will
be denoted as A3.

4. The results

4.1. Models

At first we have been interested in the strength of the models which could describe the
experimental data (Sakuraiet al 1995) for lithium. In all the analysis the spherically averaged
data were used. The spherical averaging was carried out in a standard way by calculating
weighted average of the Compton profiles with weights equal to the multiplicity of a given
crystallographic direction.

Three models of the electron momentum density distribution were tried. The first one,
denoted by M1, postulates

n(x) =
{
a1(1− a2x

2)− (18/55)T xn for x 6 1

a3 e−a4x + T x−n for x > 1
(26)

where

x = p/pF . (27)

The coefficient (18/55) was chosen for historical reasons and is not very essential as further
analysis shows up. If equation (26) described occupation number function for a uniform
electron gas the preferred value of the exponentnwould be 8 (see Takada and Yasuhara 1991).
Although the model contains six parameters, positive by definition, they are bounded by the
requirement that the integral overn(x) should be equal to 1. This requirement also imposes
the exponentn to be larger than 3. In reality, we are interesting in the parameterz, i.e. the
value of the discontinuity atx = 1. One can easily see from (26) that

z = a1(1− a2)− (73/55)T − a3 e−a4. (28)

Obviously, the value ofz should be larger than 0 and smaller than 1. The physical space of
parameters is also limited by the requirement thatn(1) should not be smaller thanz.

The model M2 is taken directly from the paper (Schülkeet al 1996):

n(x) =
{
b − 0.5(b − z)xn for x 6 1

0.5(b − z)x−n for x > 1.
(29)

Again, the valuen = 8 was originally used. This followed from the paper by Takada
and Yasuhara (1991) who calculated the influence of electron–electron correlations on the
occupation number function in uniform electron gas within so called jellium model. In light of
the paper by Kubo (1997) we know that this may be a crude approximation only. In addition, in
reconstructing the electron momentum density function we might have some factors difficult
to control which can effectively change the rate of the disappearance ofn(x) with x above the
Fermi momentum. Therefore the use ofn as a free parameter (however larger than 3) seems
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justified. As previously, we should take care that the integraln(x) over whole available space
should be equal to one.

Finally, the model M3 is intermediate between the two models described above and reads

n(x) =
{
b(1− cx2)− 0.5(b − z)xn for x 6 1

0.5(b − z)x−n for x > 1.
(30)

4.2. Simulations

First we should like to comment on the feasibility ofz-values obtained from the studies of the
likelihood function integrated over nuisance parameters. In order to have better insight into
this problem we have chosen model M2 as the base and simulated the experiment in which
the momentum density distribution was described by the function (29). Two parameters,z

andn, characterize the simulated spectrum. This spectrum was convoluted with the resolution
function of 0.12 a.u. (as in the real experiment). Finally, Gaussian noise at the level of 0.5% in
the peak was imposed. Next, using the method described in this paper, theP(z) distributions
were calculated. The results are presented in figures 1 and 2. Our experience was that in some
cases one obtains a peak splitting, but even in such a case the splitting takes place around the
proper value ofz. It can be inferred from figure 2 that the method allows for the estimation of
z with the accuracy of roughly 10%.

Figure 1. The distributionsP(z) obtained for various simulated spectra. The parameters used are
shown in the figure.

Obviously, one can always argue that a real metal like lithium may have az-parameter
which is direction dependent due to various solid-state effects. It is very difficult to obtain a
three-dimensional picture of this dependence unless extremely accurate data are collected for
many crystallographic directions. Nevertheless we see that such a sensitive parameter likez

can be estimated—even through its ‘average’ value—with reasonable accuracy with the help
of a relatively simple procedure. In fact we are unaware of other methods which can visualize
such a parameter in a more direct way.
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Figure 2. The value ofz-parameter at the maximum ofP(z) function versus the values used in
simulated data.

4.3. Analysis of experimental results

Figure 3(a) shows the results of calculations of the likelihood function exp(−χ2/2) for the
model M1, integrated over all butz- andn-parameters. In all the results presented below we
have been taking into account the instrumental resolution function with FWHM= 0.12 a.u. and
pF = 0.589 a.u. We see that almost irrespectively ofn, the value ofz at which the maximum is
attained is close to 0.1–0.15. Integrating out the parametern results in the distribution shown
in figure 3(b), which exhibits a clear maximum atz = 0.15. Two other models, however,
bring different values ofz, see figures 4(a) and (b). Here the value ofz is close to 0.45–0.5,
so the question arises of which range ofz-parameter is the most likely. In order to answer this
question we have to normalize the probabilities properly and when this is done we obtain the
following result:

P1:P2:P3 = 0.000 082: 0.0104: 0.0028. (31)

This clearly indicates thatz = 0.45 is favoured. In fact the analysis shows that there is a strong
penalty for using many parameters in the model. For example, in the model M3 the minimum
χ2 value is as low as 3.4, while in the model M2 it reads 4.4. Nevertheless we see that the
probability of M2 is almost four times larger than of model M3 which means that the penalty
factor for using only one parameter more was more than 6.

One can also ask whether the chosen value of Fermi momentumpF does not play a role.
Indeed, changingpF , the values ofz at which the maxima ofP(z) appear change. We can,
however, treatpF as an another nuisance parameter and integrate it out. As a result, staying
within the model M2, we obtain the result displayed in figure 5, which showsz = 0.47 as the
most likely value.

This value disagrees withz = 0.1±0.1 obtained in Scḧulkeet al (1996) and is also larger
than the value about 0.3 which can be deduced from the paper by Kubo (1997). In order to
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(a)

(b)

Figure 3. (a) Likelihood function for the model M1 after marginalization with respect to all butz

andn parameters. (b) The same as figure 3(a) but after marginalization also with respect ton.

check whether the lithium data obtained by the German group, which are slightly different
than the ones given by the Japanese–American team, are not leading to essentially different
values ofz, we carried out analysis of the German data. We adopted the resolution width of
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(a)

(b)

Figure 4. (a) Same as figure 3(b) for the model M2. (b) The same as figure 3(b) for the model M3.

0.17 a.u. (D̈oring, private information). Although we expected to find a value ofz close to 0.1,
as published in Scḧulke et al (1996), we found a narrow distribution of possiblez with the
maximum at 0.55 and the width at half maximum of 0.05, see figure 6. So the renormalization
parameters given by the two experiments are almost the same and it is possible that the use
of the n = 8 value could be critical for the estimation ofz. In order to give more precise
answer yet staying within the Bayesian approach, we would need to know a little more, e.g.
the strict range of possible values of some of the parameters appearing in the models. At this
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Figure 5. Same as figure 4(a) with additional marginalization with respect topF .

Figure 6. Same as figure 5 for the data of Schülkeet al (1996).

stage of analysis, we should say thatz = 0.45–0.55 is the most likely range of variation of this
parameter.

In the final step of our analysis we checked the results of the reconstruction of the spherical
part of the electron momentum density distribution by the maximum entropy method using the
algorithms described in section 3. It has been shown by Dobrzyński and Bansil (unpublished)
that using the prior given by the model M3 withz = 0.4 results in the density distribution
which exhibits about 10% larger values at low momenta with correspondingly lower values at
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Figure 7. Reconstructed spherical electron momentum density distribution for lithium using
different algorithms.

larger momenta. The ubrupt jump at the Fermi momentum stays, however, intact. Because
the algorithm (A1) used there was just a variation of the algorithm of Sakataet al, this time
we used first the algorithm A3, which proved to be much faster than the algorithm A1. In the
case of the analysed data about 60 iterations were needed to achieve full convergence of the
program. Similar calculations carried out with the use of algorithm A2 were also fast. Results
obtained with help of all three algorithms are displayed in figure 7. We see that although minute
differences exist, the most essential result for the value of the renormalization parameter is
well preserved.

5. Conclusions

Bayesian analysis has been carried out in order to establish the most likely value of
discontinuous jump in the electron momentum density distribution at the Fermi momentum.
This value should be close to the value of the renormalization parameter,z. As a test case the
results of the Compton profiles of lithium measured in Sakuraiet al (1995) were taken to the
analysis. Three different models parametrizing functionn(x) wherex = p/pF , were used.
As a result it was found that the most likely value is in the range of 0.45 to 0.50, while the
data of Scḧulke et al (1996) point toz = 0.55. In order to change these results one would
need to use some extra knowledge about the parameters entering the model or to propose better
models. Therefore the success of this paper merely consists in showing that the renormalization
parameter can be obtained from the Compton experiments carried out with the resolution of
0.12 a.u. and even 0.17 a.u.

Independently it was checked that the simple algorithm A1, used in the MEED package,
is producing results very close to the ones produced by other two algorithms tried in this
paper. This gives more confidence not only in the A1 type algorithms but also in the result
concerning the value of thez-parameter, which turned out to be not affected by the process of
reconstruction of the spherical part of the electron momentum density in lithium.
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